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Abstract. Using the time-dependent unitary transformation instead of the invariant operator,
the solutions of SU(1, 1) and SU(2) time-dependent quantum systems are obtained. It is shown
that the evolution operator is decomposed into the product form of two unitary operators in such
a way that one of them has the same periodicity as the Hamiltonian and the other correspond to
the Floquet operator which gives the cyclic states and their associated phases over one period of
the evolution. The non-adiabatic Berry’s (or Aharonov–Anandan) phases are determined totally
by such a unitary transformation.

1. Introduction

The explicitly time-dependent quantum systems have been a long-standing mathematical
problem, and are not yet completely solved in general. Various methods have been used
to obtain approximate solutions for such time-dependent problems. The usual methods
are the adiabatic approximation, the sudden approximation and time-dependent perturbation
techniques. The existence of invariants (constants of the motion or first integral) introduced
by Lewis and Riesenfeld [1] is one factor of central importance in the study of such systems.
They have derived a simple relation between eigenstates of the invariantI and solutions
of the time-dependent Schrödinger equation, and have applied it to the case of a quantal
oscillator with time-dependent frequency. If the Hamiltonian depends explicitly on time
through a set of parameters, Berry [2] has shown that, in the adiabatic hypothesis, an
eigenstate of the Hamiltonian develops, besides an expected dynamical phase, a geometrical
phaseγ Bn (C) whose value only depends on the closed pathC in the space of parameters.
Removing the adiabatic hypothesis, Aharonov and Anandan [3] have generalized Berry’s
result and shown that such a phase may appear for any state which is cyclic with respect
to some evolution. (Cyclicity means that the state returns to itself, after some time, up to
a phase factor; in Berry’s approach, the adiabatic hypothesis ensures the cyclicity of the
eigenstates ofH(t) after one loop.) Therefore, a natural (but not unique) way to obtain
such a basis of cyclic states is to consider the eigenvectors of a Hermitian periodic invariant
I (t). Indeed, any eigenstate of an invariant operatorI (0) at time zero evolves continuously
into the corresponding eigenstate of the invariant operatorI (t) at time t [1], exactly as an
eigenstate of the Hamiltonian does when the evolution is adiabatic. For this reason, invariant
operators have played an important part in recent works on non-adiabatic geometric phases
[4–12]. In most of these papers use is made of the Lewis–Riesenfield quadratic invariant to
study two archetypal examples. One of these is the time-dependent generalized harmonic
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oscillator, the Hamiltonian of which is a time-dependent function of the SU(1, 1) generator
and the other is the spin in a time-dependent varying magnetic field with Hamiltonian
consisting of the SU(2) generator. In [13], the SU(1, 1) and SU(2) time-dependent systems
are exactly integrated and the time evolution operator and non-adiabatic Berry’s phase are
obtained thanks to the invariant Hermitian operator.

In light of the above discussion, one important question motivates our work here: How
could one treat SU(1, 1) and SU(2) time-dependent quantum problems and investigate the
possibility of finding cyclic states and their associated phases, without making recourse to
the invariant operator theory?

In this paper we answer this question from a new perspective by studying the time-
dependent periodic Hamiltonian systems given by a linear combination of SU(1, 1) and
SU(2) generators using a time-dependent unitary transformation. Therefore, the quantity
of main importance in the study of the periodic Hamiltonian and cyclic states and the
accompanying phases is the evolution operatorU(t). In this case, one knows that the
evolution operator over one periodU(T ) defines the Floquet operatorF where its eigenstates
are solutions of the Schrödinger equation satisfying the quantum cyclic evolution condition

ψn(t) = e−(ı/h̄)Entφn(t) φn(t + T ) = φn(t). (1.1)

The phase remains the sum of dynamical and geometrical phases, as in Berry’s case. The
eigenvalues{En}, called ‘energy bands’ or ‘quasi-energy’ in solid-state physics, are periodic
functions in the parameter space, which is the Brillouin zone [14] in the case of a spatially
periodic Hamiltonian.

Because of the existence of an invariant operator, an SU(1, 1) and SU(2) time-dependent
quantum system must be integrable. For an integrable system, the Hamiltonian can be
transformed into a sum of time-independent commuting operators through a time-dependent
unitary transformation [10, 15–18]. As a consequence, the solution of the time-dependent
Schr̈odinger equation for an integrable system can be written as eigenstates of these
commuting operators. In section 2, we obtain with the help of the appropriate unitary
transformation, the solution of the SU(1, 1) and SU(2) time-dependent system, as well as
the time-evolution operator. In addition, the other advantage of our approach is that the
time evolution operator can be decomposed into the product form

U(t) = V (t)R(t) (1.2)

in such a way that the unitary operatorV (t) has the same periodicity as the Hamiltonian
with V (T ) = V (0) = 1, and over one periodR(t) correspond to the Floquet operator
which gives the cyclic states and their associated phases. The non-adiabatic Berry’s (or
Aharonov–Anandan) phases are determined totally by such a unitary transformation.

2. Evolution of SU(1, 1) and SU(2) time-dependent systems

The SU(1, 1) and SU(2) time-dependent systems that we consider are described by the
periodic Hamiltonian

H(t) = ω(t)K0+G(t)(K+ eıϕ(t) +K− e−ıϕ(t)) (2.1)

whereω(t), G(t) andϕ(t) are periodic functions of time with periodT . K0 is a Hermitian
operator, whileK+ = (K−)+. The commutation relations of the operators are

[K0,K±] = ±K± [K+,K−] = DK0. (2.2)

The Lie algebra of SU(2) and SU(1, 1) consists of the generatorsK0 andK± corresponding
to D = 2 and−2 in the commutation relations (2.2), respectively.
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In a way similar to Bloch’s construction for periodic crystals, one may solve the periodic
time-dependent Schrödinger equation (assume ¯h = 1)

ı
∂

∂t
|ψ(t)〉 = H(t)|ψ(t)〉 (2.3)

with the requirement that its solution looks like a generalized Bloch function, i.e. it is of
the form (1.1) (the product of a wavefunction satisfying a stationary equation with a time-
dependent function). Therefore, we perform the time-dependent unitary transformation
identical to the unitary operator (6) of Laiet al [13]

U(t) = exp

{
γ (t)

2
(K+ e−ıβ(t) −K− eıβ(t))

}
(2.4)

whereγ (t) andβ(t) are arbitrary real time-dependent parameters.
Recall that under a unitary transformation|ψ(t)〉 → |ψ̃(t)〉 = U−1(t)|ψ(t)〉, the

HamiltonianH(t) and the corresponding time evolution operatorU(t) transform according
to

H(t)→ H̃ (t) = U−1H(t)U − ıU−1∂U

∂t
(2.5)

U(t)→ Ũ(t) = U−1(t)U(t)U(0). (2.6)

These equations are obtained by demanding that the time evolution in the transformed frame
is governed by the Schrödinger equation corresponding to the transformed Hamiltonian
H̃ (t). Substituing (2.4) into (2.5) one can show that

H̃ (t) = K0D

(
ω

D
+(β̇ − ω) 4

λ2
sin2 λ

4
γ− 2

λ
G sin

λ

2
γ cos(ϕ+β)

)
+K+ e−ıβ

(
ω − β̇
λ

sin
λ

2
γ−G cos

λ

2
γ cos(ϕ+β)− ı

2
{γ̇−2G sin(ϕ+β)}

)
+K− eıβ

(
ω − β̇
λ

sin
λ

2
γ−G cos

λ

2
γ cos(ϕ+β)+ ı

2
{γ̇−2G sin(ϕ+β)}

)
(2.7)

whereλ = √2D. In the derivation of equation (2.7) use is made of the following identities:

U+K+U = K+ cos2
λ

4
γ −K− e2ıβ sin2 λ

4
γ − D

λ
K0 eıβ sin

λ

2
γ

U+K−U = K− cos2
λ

4
γ −K+ e−2ıβ sin2 λ

4
γ − D

λ
K0 e−ıβ sin

λ

2
γ

U+K0U = K0 cos
λ

2
γ + 1

λ
(K+ e−ıβ +K− eıβ) sin

λ

2
γ

ıU+
∂U

∂t
= −2K0β̇ sin2 λ

4
γ +K+ e−ıβ

(
ı
γ̇

2
+ β̇
λ

sin
λ

2
γ

)
+K− eıβ

(
−ı γ̇

2
+ β̇
λ

sin
λ

2
γ

)
.

(2.8)

The central idea in this procedure is to simplify the transformed HamiltonianH̃ (t)

governing the evolution of|ψ̃(t)〉 by cancelling the termK+ (or K−). This is achieved by
requiring

γ̇ = 2G sin(ϕ + β)
ω − β̇
λ

sin
λ

2
γ = G cos

λ

2
γ cos(ϕ + β) (2.9)
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by which γ andβ are detemined for given values ofG, ϕ andω. The important point to
note here is that the auxiliary equations (2.9) appears automatically in this process and are
idendical to equations (7) and (8) for Laiet al [13] who used the general method of Lewis
and Riesenfield to derive them. Then the transformed HamiltonianH̃ (t) becomes

H̃ = g(t)K0

g(t) = D
(
ω

D
+ (β̇ − ω) 4

λ2
sin2 λ

4
γ − 2

λ
G sin

λ

2
γ cos(ϕ + β)

)
(2.10)

and the time evolution operator (2.6) is obviously

U(t, 0) = exp

{
γ (t)

2
(K+ e−ıβ(t) −K− eıβ(t))

}
exp

[
−ı
∫ t

0
dt ′ g(t ′)K0

]
× exp

{
− γ0

2
(K+ e−ıβ0 −K− eıβ0)

}
(2.11)

and has all the properties of a unitary evolution operator. Hereγ0 = γ (0) andβ0 = β(0)
are the initial values. The implication of these results is clear. The original time-dependent
quantum problem (posed through the Hamiltonian (2.1) and related to an associated time-
independent Hamiltonian multiplied by an overall time-dependent factor) is completely
solved without employing the Lewis–Riesenfeld theory (or invariant operator theory)
[1].

In the case when the parametersω(t), G(t) and ϕ(t) are T -periodic, i.e.(ω,G, ϕ)
(t + T ) = (ω,G, ϕ)(t) for someT , equations (2.9) may have periodic solutions. When
the auxiliary functions are periodic, i.e.(γ, β)(t + T ) = (γ, β)(t), then the time evolution
operator can be decomposed into the product form

U(t) = V (t)R(t) (2.12)

whereV (t) = U(t) U−1(0) is T -periodic and unitary withV (T ) = V (0) = 1 and

R(t) = U(0) exp

[
−ı
∫ t

0
dt ′ g(t ′)K0

]
U−1(0)

which correspond to the Floquet operator over one period. Decomposition of this type has
attracted much interest in the study of periodic system [19–21]. ReplacingD by ±2 in the
above expression of the time evolution operator, we obtain the time evolution operator and
the Floquet operator for the SU(2) and SU(1, 1) systems, respectively.

We will now show how this result gives the cyclic states. Let|φn〉 be the eigenstate of
K0 with eigenvaluekn, i.e.

K0|φn〉 = kn|φn〉. (2.13)

The cyclic states|ψn(0)〉 = U(0)|φn〉 for the evolution in question are precisely the
eigenstates ofU(T ) = R(T ) with eigenphasesαn(T ) = kn

∫ T
0 dt ′ g(t ′), as can be seen

from

|ψn(T )〉 = U(T )|ψn(0)〉 = exp

[
ıkn

∫ T

0
dt ′ g(t ′)

]
|ψn(0)〉 (2.14)

i.e. each state returns to itself after timeT (in the evolution associated withH(t)) up to a
phaseαn(T ). In the other words, the solutions|ψn(t)〉 are the Floquet (or Bloch) states with
associated quasi-energyEn = αn(T )/T . Then by virtue of equation (2.5) the quasi-energy



Cyclic evolution of SU(1, 1) and SU(2) time-dependent systems 6853

spectrum can be determined as

αn(T ) = kn
∫ T

0
dt g(t) =

∫ T

0
dt g(t)

∫ T

0
〈ψn(0)|U−1(0)K0U(0)|ψn(0)〉

=
∫ T

0
〈ψn(t)|H(t)|ψn(t)〉 dt −

∫ T

0
dt 〈ψn(0)|ıV −1(t)

∂

∂t
V (t)|ψn(0)〉

= γ d
n (T )+ γ g

n (T ). (2.15)

γ d
n (T ) =

∫ T

0
dt 〈ψn(t)|H(t)|ψn(t)〉 (2.16)

γ g
n (T ) =

∫ T

0
〈φn(t)|ı ∂

∂t
|φn(t)〉 =

∫ T

0
〈φn|ıU−1(t)

∂

∂t
U(t)|φn〉

= 2kn

∮
sin2 λ

4
γ dβ (2.17)

where|φn(t)〉 = V (t)|ψn(0)〉 and where we have used the commutation relations (2.2) and
equations (2.8). The phasesγ d

n (T ) andγ g
n (T ) were called the dynamical and geometrical

(non-adiabatic Berry’s) phases [3]. Thus,γ g
n (C) for SU(2) and SU(1, 1) systems depend

onD = ±2 and have a rather interesting structure, being the product of two quite distinct
parts, the expectation value ofK0 for the corresponding autonomous system and a circuit
integral in parameter space.

Before concluding this paper, we give a few special examples, i.e. a spin in a
time-varying magnetic field and a quantum particle moving in the potentialW(q, t) =
(1/2)(X(t)q2+Z(t)l2/q2). First, we considerD = 2 with λ = ±2 where Hamiltonian (2.1)
possesses the symmetry of the dynamical group SU(2). A spin in a time-varying magnetic
field is a practical example in this case [9, 13, 16, 21, 22]. LetK0 = J3 andK± = J±. |j, n〉
are the eigenvectors ofJ3 , i.e. J3|j, n〉 = n|j, n〉. The next step is the calculation of the
phasesαn(T ) of equation (2.15). These are given by

αn(T ) = 2n
∫ T

0
dt

(
ω

2
+ (β̇ − ω) sin2 γ

2
−G sinγ cos(ϕ + β)

)
(2.18)

and the non-adiabatic Berry’s phase is

γ g
n (T ) = n

∮
C

dβ (1− cosγ ) = n�(C) (2.19)

where�(C) is the solid angle subtended by the curveC.
Second, we considerD = −2 with λ = ±2i. The SU(1, 1) Lie algebra has a realization

in terms of

K0 = 1

4

[
q2+ p2+ l2

q2

]
K± = 1

4

[
q2− p2∓ i(pq + qp)− l2

q2

]
. (2.20)

The Hamiltonian (2.1) then describes the so-called ‘singular oscillator’. Various properties
and physical applications to vibrational modes of polyatomic molecules of quantum systems
described by this Hamiltonian have also been studied [10, 23–26]. Substitution ofD = −2
andλ = ±2i into equation (2.15) yields

αn(T ) = −2

(
n+ c

2
+ 3

4

)∫ T

0
dt

(
− ω

2
+ (β̇ − ω) sinh2 γ

2
−G sinhγ cos(ϕ + β)

)
(2.21)

where |n, c〉 are the eigenvectors ofK0, i.e. 2K0|n, c〉 = 2(n + c/2 + 3/4)|n, c〉 and
l2 = c(c + 1). The non-adiabatic Berry’s phase is

γ g
n (T ) = −

(
n+ c

2
+ 3

4

)∮
C

dβ coshγ. (2.22)
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